In a nutshell: Interpolating polynomials

Given $n+1$ points $\left(x_{0}, y_{0}\right), \ldots,\left(x_{n}, y_{n}\right)$, we can find an interpolating polynomial of degree n that passes through these $n+1$ points so long as all the x values are distinct.

1. Create the Vandermonde matrix $V=\left(\begin{array}{cccccc}x_{0}^{n} & x_{0}^{n-1} & \cdots & x_{0}^{2} & x_{0} & 1 \\ x_{1}^{n} & x_{1}^{n-1} & \cdots & x_{1}^{2} & x_{1} & 1 \\ x_{2}^{n} & x_{2}^{n-1} & \cdots & x_{2}^{2} & x_{2} & 1 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ x_{n-1}^{n} & x_{n-1}^{n-1} & \cdots & x_{n-1}^{2} & x_{n-1} & 1 \\ x_{n}^{n} & x_{n}^{n-1} & \cdots & x_{n}^{2} & x_{n} & 1\end{array}\right)$ and the vector $\mathbf{y}=\left(\begin{array}{c}y_{0} \\ y_{1} \\ y_{2} \\ \vdots \\ y_{n-1} \\ y_{n}\end{array}\right)$.
2. Solve the system $V \mathbf{a}=\mathbf{y}$.
3. The entries of the solution vector a correspond to the coefficient of the term of the corresponding column. Thus, the first entry is the coefficient of x^{n}, the second of x^{n-1}, and so on, until we get that the second-last entry being the coefficient of the linear term x and the last entry being the constant coefficient.

If these $n+1 x$-values are equally spaced, we can shift and scale them so that the x-values line up with the points $-n$, $1-n, 2-n, \ldots,-2,-1,0$, in which case, the Vandermonde matrix becomes:

$$
V=\left(\begin{array}{cccccc}
0 & 0 & \cdots & 0 & 0 & 1 \\
(-1)^{n} & (-1)^{n-1} & \cdots & 1 & -1 & 1 \\
(-2)^{n} & (-2)^{n-1} & \cdots & 4 & -2 & 1 \\
\vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
(1-n)^{n} & (1-n)^{n-1} & \cdots & x_{n-1}^{2} & 1-n & 1 \\
(-n)^{n} & (-n)^{n-1} & \cdots & x_{n}^{2} & -n & 1
\end{array}\right)
$$

Note: Generally, we only find, at most, interpolating polynomials of degree four. Interpolating polynomials can only be used for estimating values between the minimum and maximum x values and should never be used for extrapolation.

